微流控气喷纺丝制备高效光降解纤维任务书

 2022-01-21 20:58:44

全文总字数:5570字

1. 毕业设计(论文)的内容和要求

本课题主要是通过微流体气喷技术制备聚合物纤维再经过后续一系列处理制备用于高效光降解纤维,并对已制备的光降解运用傅里叶变换红外(FT-IR)光谱、拉曼光谱、扫描电镜(SEM)、紫外吸收(UV-Vis)等表征。

通过本课题的研究,使学生了解微流体气喷技术和光降解的机理等相关知识,了解国内外研究现状,并对材料化学工程、仪器分析有更进一步的认识;培养学生独立查找和阅读国内外文献的能力;了解各种表征手段、实验室安全规程、各级药品的储存与保管,锻炼本科生独立思考和独立实验的能力。

能独立使用软件处理相关数据,具有初步的整理和分析数据的能力,包括origin等数据处理软件、Word撰写论文以及使用PowerPoint制作答辩报告的能力。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 实验内容和要求

(1)熟悉并且掌握运用微流体气喷技术制备光降解的方法。

(2)将所制备的光降解性能测试。

(3)熟悉并且掌握表征材料性能的仪器,以及如何操作仪器和分析数据。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 参考文献

(1) Wu, X.; Xu, Y.; Hu, Y.; Wu, G.; Cheng, H.; Yu, Q.; Zhang, K.; Chen, W.; Chen, S., Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat. Commun. 2018, 9, 4573.(2) Xu, W.; Hu, X.; Zhuang, S.; Wang, Y.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J., Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination. Adv. Eng. Mater. 2018, 8, 1702884.(3) Bae, K.; Kang, G.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.(4) Du, X. Y.; Li, Q.; Wu, G.; Chen, S., Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Adv. Mater. 2019, 31, e1903733.(5) Zhang, Y.; Wang, C.-F.; Chen, L.; Chen, S.; Ryan, A. J., Microfluidic-Spinning-Directed Microreactors Toward Generation of Multiple Nanocrystals Loaded Anisotropic Fluorescent Microfibers. Adv. Funct. Mater. 2015, 25, 7253-7262.(6) Lin, W.; Ni, Y.; Pang, J., Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr. Polym. 2019, 222, 114986.(7) Cheng, R.; Li, F.; Zhang, J.; She, X.; Zhang, Y.; Shao, K.; Lin, Y.; Wang, C.-F.; Chen, S., Fabrication of amphiphilic quantum dots towards high-colour-quality light-emitting devices. J. Mater. Chem. C 2019, 7, 4244-4249.(8) Lu, X.; Hu, Y.; Guo, J.; Wang, C. F.; Chen, S., Fiber-Spinning-Chemistry Method toward In Situ Generation of Highly Stable Halide Perovskite Nanocrystals. Adv. Sci. 2019, 6, 1901694.(9) Ma, K.; Du, X.-Y.; Zhang, Y.-W.; Chen, S., In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C 2017, 5, 9398-9404.(10) Guan, X.; Zheng, G.; Dai, K.; Liu, C.; Yan, X.; Shen, C.; Guo, Z., Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150-14159.(11) Zhang, J.; Shi, Y.; Ding, Y.; Zhang, W.; Yu, G., In Situ Reactive Synthesis of Polypyrrole-MnO2 Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium-Sulfur Battery. Nano Lett. 2016, 16, 7276-7281.(12) Tang, H.; Wang, J.; Yin, H.; Zhao, H.; Wang, D.; Tang, Z., Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117-1123.(13) Li, H.; Yin, J.; Meng, Y.; Liu, S.; Jiao, T., Nickel/Cobalt-Containing polypyrrole hydrogel-derived approach for efficient ORR electrocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586.(14) Zhu, L.; Gao, M.; Peh, C. K. N.; Wang, X.; Ho, G. W., Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation. Adv. Energy Mater. 2018, 8, 1702149.(15) Yan, D.; Liu, J.; Fu, X.; Liu, P.; Luo, H. a., Low-temperature synthesis of mesoporous boron carbides as metal-free photocatalysts for enhanced CO2 reduction and generation of hydroxyl radicals. J Mater Sci Technol 2019, 54, 6151-6163.(16) Li, Y.; Cui, X.; Zhao, M.; Xu, Y.; Chen, L.; Cao, Z.; Yang, S.; Wang, Y., Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation. J. Mater. Chem. A 2019, 7, 704-710.(17) Li, X.; Ni, G.; Cooper, T.; Xu, N.; Li, J.; Zhou, L.; Hu, X.; Zhu, B.; Yao, P.; Zhu, J., Measuring Conversion Efficiency of Solar Vapor Generation. Joule 2019, 3, 1798-1803.(18) Gong, F.; Li, H.; Wang, W.; Huang, J.; Xia, D.; Liao, J.; Wu, M.; Papavassiliou, D. V., Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322-330.(19) Ran, J.; Jaroniec, M.; Qiao, S. Z., Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Adv. Mater. 2018, 30, 1704649.(20) Chang, X.; Wang, T.; Zhang, P.; Wei, Y.; Zhao, J.; Gong, J., Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2 O Dark Cathode with Improved Selectivity for Carbonaceous Products. Angew. Chem. 2016, 55, 8840-8845.(21) Periasamy, A. P.; Ravindranath, R.; Senthil Kumar, S. M.; Wu, W. P.; Jian, T. R.; Chang, H. T., Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10, 11869-11880.(22) Wang, X.; Li, X.; Liu, G.; Li, J.; Hu, X.; Xu, N.; Zhao, W.; Zhu, B.; Zhu, J., An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator. Angew. Chem. 2019, 58, 12054-12058.

4. 毕业设计(论文)计划

2021. 2 .20 ~ 2021. 3.12 :了解课题背景,资料收集整理,阅读有关文献,完成开题报告;2021. 3. 13 ~ 2021. 4 .5:掌握微流体气喷纺丝制备光降解纤维方法以及相关实验;2021. 4. 6 ~ 2021. 5. 10 :对制备的纳米纤维膜进行扫描电镜(SEM)、光热转换效率、红外等表征,处理实验数据,并做相关的蒸发应用;2021. 5. 11 ~ 2021. 6. 8 :总结实验结果,对所得的测试结果进行分析,完成毕业论文,准备论文答辩。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。