堇青石负载稀土基脱硝催化剂涂层的制备与性能任务书

 2021-10-25 09:10

1. 毕业设计(论文)的内容和要求

本课题开展堇青石负载稀土基脱硝催化剂的制备工艺探索,研究涂层前驱体的选择,涂层与载体高结合强度,碱金属离子中毒影响,催化剂负载量和脱硝性能之间的关系以及堇青石负载稀土基脱硝催化剂的反应机理。

(1)在第1章引言部分,通过文献阅读和总结分析,给出如下内容:TiO2、Al2O3等其他催化剂载体相比,堇青石具有机械强度高和成本低廉等优势,但堇青石涂层易受柴油车尾气中碱金属离子影响,造成碱金属离子中毒,因此堇青石负载稀土脱硝催化剂设计时还需考虑催化剂涂层碱金属离子影响,如何在保证堇青石与涂层高强度结合的基础上,提高堇青石载体的抗碱金属离子中毒性能,从而提高堇青石负载稀土脱硝催化剂的性能,是本课题的研究重点之一。

(2)在第2章试验方法设计部分,针对文献研究中发现的问题,考虑到柴油车尾气中不仅含有NOx,同时还有一氧化碳、碳氢以及水蒸气等组分,因此设计堇青石负载稀土基脱硝催化剂时还需要考虑复杂烟气组分对催化剂脱硝性能的影响,保证催化剂在复杂工况烟气组分下的脱硝活性。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Bonongari T, Somogyvari A, Smimiotis P G. Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions[J]. Ind Eng Chem Res, 2017, 56(19): 5483-94.[2] Casapu M, Krocher O, Elseber M. Screening of doped MnOx-CeO2 catalysts for low-templerature NO-SCR[J]. Appl Catal B-Environ, 2009, 88(3-4): 413-9.[3] Casapu M, Krocher O, Mehring M, et al. Characterization of Nb-containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2010, 114(21): 9791-801.[4] Chen B H, Xu R N, Zhang R D, et al. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia[J]. Environ Sci Technol, 2014, 48(23): 13909-16.[5] Colombo M, Nova I, Tronconi E. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst[J]. Catal Today, 2010, 151(3-4): 223-30.[6] Forzatti P, Nova I, Tronconi E. Enhanced NH3 selective catalytic reduction for NOx abatement[J]. Angew Chem-Int Edit, 2009, 48(44): 8366-8.[7] Gao X, Jiang Y, Zhong Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater, 2010, 174(1-3): 734-9.[8] Kim Y J, Kwon H J, Heo I, et al. Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust[J]. Appl Catal B-Environ, 2012, 126: 9-21.[9] Kim Y J, Lee J K, Min K M, et al. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. J Catal, 2014, 311: 447-57.[10] Liu F D, He H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010, 114(40): 16929-36.[11] Liu F D, Shan W P, Lian Z H, et al. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx[J]. Catal Sci Technol, 2013, 3(10): 2699-707.[12] Liu Z M, Yi Y, Li J H, et al. A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia[J]. Chem Commun, 2013, 49(70): 7726-8.[13] Lomachenko K A, Borfecchia E, Negri C, et al. The Cu-CHA deNOx catalyst in action: Temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES [J]. J Am Chem Soc, 2016, 138(37): 12025-8.[14] Mal, Cheng Y S, Cavataio G, et al. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B-Environ, 2014, 156: 428-37.[15] Mahmoudi S, Baeyens J, Seville J P K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass[J]. Biomass Bioenerg, 2010, 34(9): 1393-409.[16] Shu Y, Sun H, Quan X, et al. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia [J]. J Phys Chem C, 2012, 116(48): 25319-27.[17] Stolle R, Koeser H, Gutberlet H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Appl Catal B-Environ, 2014, 144: 486-97.[18] Wang J C, Peng Z L, Chen Y, et al. In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3[J]. Chem Eng J, 2015, 263: 9-19.[19] Zhang L, Zhang D S, Zhang J P, et al. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20): 9821-9.[20] Bacariza M C, Mendes A N, Ozhan C, et al. Optimizing washcoating conditions for the preparation of zeolite-based cordierite monoliths for NOx CH4-SCR: A required step for real application[J]. Ind Eng Chem Res, 2019, 58(27): 11799-810.[21] De-La-Torre U, Pereda-Ayo B, Onrubia J A, et al. Effect of the presence of ceria in the NSR catalyst on the hydrothermal resistance and global deNOx performance of coupled LNT-SCR systems[J]. Top Catal, 2018, 61(18-19): 1993-2006.[22] Dietric M, Hagen G, Moos R. Dielectric properties and temperature dependency of automotive catalyst coatings and substrate materials: Experimental results, influences and approximation approach [J]. Funct Mater Lett, 2019, 12(3): 4.[23] Jung H, Park E, Kim M, et al. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator [J]. Waste Manage, 2017, 61(283): 7.[24] Kang W, Choi B, Jung S, et al. PM and NOx reduction characteristics of LNT/DPF plus SCR/DPF hybrid system [J]. Energy, 2018, 143(439): 47.[25] Li X, Li Q, Li W, et al. Enhancement of SCR performance of monolithic Mn-Ce/Al2O3/cordierite catalysts by using modified deposition precipitation method[J]. Asia-Pac J Chem Eng, 2019, 14(4): 14.[26] Lin Q J, Liu J Y, Liu S, et al. Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH3-SCR[J]. Dalton Trans, 2018, 47(42): 15038-48.[27] Marberger A, Petrov A W, Steiger P, et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13[J]. Nat Catal, 2018, 1(3): 221-7.[28] Wang S X, Chen Z W, He B N, et al. In Situ DRIFTS Investigation on CeOx Catalyst Supported by Fly-Ash-Made Porous Cordierite Ceramics for Low-Temperature NH3-SCR of NOx[J]. Catalysts, 2019, 9(6): 14.[29] Yan Z, Yang J Y, Ge X L, et al. Manganese oxide catalysts supported on zinc oxide nanorod arrays: A new composite for selective catalytic reduction of NOx with NH3 at low temperature[J]. Appl Surf Sci, 2019, 491(579): 89.[30] You Y H, Wu Z D, Zeng W D, et al. CFD modeling of unsteady SCR deNOx coupled with regenerative heat transfer in honeycomb regenerators partly coated by Vanadium catalysts[J]. Chem Eng Res Des, 2019, 150(234): 45.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。