电参数对镁合金微弧氧化涂层原位颗粒封孔的影响任务书

 2021-10-27 09:10

1. 毕业设计(论文)的内容和要求

本课题将采用羟基磷灰石(HA)原位封孔技术提高微弧氧化涂层的长效耐腐蚀性能。

通过优化HA粒径大小、电参数以期制备出致密性更好和稳定化合物含量更高的微弧氧化涂层;进一步了解铝合金表面微弧氧化涂层的制备及涂层材料的表征分析技术,熟悉微弧氧化涂层耐腐蚀性能的表征方法及电化学工作站的使用方法,掌握微弧氧化涂层陶瓷封孔的电化学系统构建。

最后把整个研究内容写成毕业论文。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.[2] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35:1-11.[3] Liu C Z, Cui N Y, Brown N M D, et al. Effects of DBD plasma operating parameters on the polymer surface modification[J]. Surface Coatings Technology, 2004, 185:311-320.[4] 王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用[M]. 国防工业出版社, 2010.[5] Dou J, Chen Y, Yu H, et al. Research status of magnesium alloys by micro-arc oxidation: a review[J]. Surface Engineering, 2017, 33:731-738.[6] Gao Y H, Yerokhin A, Matthews A. Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings[J]. Applied Surface Science, 2014, 316:558-567.[7] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al. PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes[J]. Surface Coatings Technology, 2010, 204:2316-2322.[8] Hakimizad A, Raeissi K, Golozar M A, et al. The effect of pulse waveforms on surface morphology, composition and corrosion behavior of Al2O3 and Al2O3/TiO2 nano-composite PEO coatings on 7075 aluminum alloy[J]. Surface and Coatings Technology, 2017,324:208-221.[9] Harun W S W, Asri R I M, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials [J]. Ceramics International, 2018,44:1250-1268.[10] Huang Q L, Liu X J, Zhang R R, et al. The development of Cu-incorporated micro/nano-topographical bio-ceramic coatings for enhanced osteoblast response[J]. Applied Surface Science, 2019,465:575-583.[11] Joni M S, Fattah-Alhosseini A. Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy[J]. Journal of Alloys and Compounds, 2016, 661:237-244.[12] Lu X P, Blawert C, Huang Y, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles[J]. Electrochimica Acta, 2016, 187:20-33.[13] Lu X P, Blawert C, Kainer K U, et al. Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles[J]. Electrochimica Acta, 2016, 196:680-691.[14] Lu X P, Blawert C, Mohedano M, et al. Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy[J]. Surface and Coatings Technology, 2016, 289:179-185.[15] Lu X P, Blawert C, Zheludkevich M L, et al. Insights into plasma electrolytic oxidation treatment with particle addition[J]. Corrosion Science, 2015, 101:201-207.[16] Lu X P, Sah S P , Scharnagl N , et al. Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition[J]. Surface and Coatings Technology, 2015, 269:155-169.[17] Sankara Narayanan T S N, Park I S, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges[J]. Progress in Materials Science, 2014, 60:1-71.[18] Tang H, Han Y, Wu T, et al. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation[J]. Applied Surface Science, 2017, 400:391-404.[19] Thu B D. 微弧氧化及封孔处理对AlSi12Cu铝合金性能的影响[D]. 2017.[20] Wang P, Wei W X, Pu J, et al. Effect of current density on characteristics of 2024 aluminum alloy microarc oxidation coatings with titanium dioxide particles[J]. International Journal of Electrochemical Science, 2019,14:4338-4349.[21] Xu G Q, Shen X K. Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance[J]. Surface Coatings Technology, 2019, 364:180-186.[22] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surface Coatings Technology, 1999, 122:73-93.[23] Yu X W, Yan Z C, Qin H L, et al. In-situ growth of nanostructured catalytic coatings via one-step plasma electrolytic oxidation[J]. Applied Surface Science, 2019, 479:738-744.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。