高效光转热结构模式的构建及其促进光催化制氢性能的研究任务书

 2021-10-22 09:10

1. 毕业设计(论文)的内容和要求

光催化制氢技术自上个世纪七十年代被提出后,一直备受关注。

为了提升光催化效率,并实现光催化技术的大规模应用,多方面因素综合促进反应效率以及对太阳光谱的高效利用,是至关重要的策略点。

除了关注光生载流子分离效率、能带结构等对光催化剂本身的光催化效率的影响外,光催化反应环境以及太阳光谱的利用,也逐渐成为影响光催化反应性能的重要因素。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Jiao J, Zhou Z-J, Zhou W-H, et al. CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application [J]. Materials Science In Semiconductor Processing, 2013, 16(2): 435-440.[2] Chen W, Wang T, Xue J, et al. Cobalt-Nickel Layered Double Hydroxides Modified on TiO2 Nanotube Arrays for Highly Efficient and Stable PEC Water Splitting [J]. Small, 2017, 13(10).[3] Meng Y, An L, Han X, et al. Controllable (Ga1xZnx)(N1xOx) nanorods grown on black silicon as anodes for water splitting [J]. Applied Surface Science, 2020, 502.[4] Lu H, Zhang M, Guo M. Controllable electrodeposition of ZnO nanorod arrays on flexible stainless steel mesh substrate for photocatalytic degradation of Rhodamine B [J]. Applied Surface Science, 2014, 317: 672-681.[5] Castedo A, Casanovas A, Angurell I, et al. Effect of temperature on the gas-phase photocatalytic H 2 generation using microreactors under UVA and sunlight irradiation [J]. Fuel, 2018, 222: 327-333.[6] Jing D, Guo L, Zhao L, et al. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration [J]. International Journal Of Hydrogen Energy, 2010, 35(13): 7087-7097.[7] Honda A F K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature Chemistry, 1972, 238: 37-38.[8] Skompska M, Zarbska K. Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substratesa Review [J]. Electrochimica Acta, 2014, 127: 467-488.[9] Michael R. Hoffmann S T M, Wonyong Choi, and Detlef W. Bahnemannt. Environmental Applications of Semiconductor Photocatalysis [J]. Chem Rev, 1995: 69-96.[10] Wang X, Wang F, Sang Y, et al. Full-Spectrum Solar-Light-Activated Photocatalysts for Light-Chemical Energy Conversion [J]. Advanced Energy Materials, 2017, 7(23): 1700473.[11] Liu B, Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J]. Journal Of the American Chemical Society, 2009, 131(11): 3985-3990.[12] Peh C K N, Gao M, Ho G W. Harvesting broadband absorption of the solar spectrum for enhanced photocatalytic H2 generation [J]. Journal Of Materials Chemistry A, 2015, 3(38): 19360-19367.[13] Zhang D, Liu W, Guo R, et al. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array [J]. Adv Sci (Weinh), 2018, 5(2): 1700512.[14] Han H, Karlicky F, Pitchaimuthu S, et al. Highly Ordered N-Doped Carbon Dots Photosensitizer on Metal-Organic Framework-Decorated ZnO Nanotubes for Improved Photoelectrochemical Water Splitting [J]. Small, 2019, 15(40): e1902771.[15] Zhang Z, Jiang X, Liu B, et al. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H2 Generation [J]. Advanced Materials, 2018, 30(9).[16] Wang W, Qi L. Light Management with Patterned Micro‐ and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices [J]. Advanced Functional Materials, 2019, 29(25).[17] Huang H, Dai B, Wang W, et al. Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H-2 Evolution in CdS Nanorods [J]. Nano Letters, 2017, 17(6): 3803-3808.[18] Andrew Mills S L H. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997: 1-35.[19] Wang Q, Nakabayashi M, Hisatomi T, et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting [J]. Nature Materials, 2019.[20] Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects [J]. Advanced Materials, 2014, 26(27): 4607-4626.[21] Gan Z, Wu X, Meng M, et al. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites [J]. Acs Nano, 2014, 8(9): 9304-9310.[22] Neelgund G M, Oki A. Photothermal effect: an important aspect for the enhancement of photocatalytic activity under illumination by NIR radiation [J]. Mater Chem Front, 2018, 2(1): 64-75.[23] Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting [J]. Chemical Society Reviews, 2019, 48(7): 2109-2125.[24] Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1 [J]. Nature Materials, 2016, 15(6): 611-615.[25] Kou J, Lu C, Wang J, et al. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations [J]. Chemical Reviews, 2017, 117(3): 1445-1514.[26] Moradi V, Jun M B G, Blackburn A, et al. Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process [J]. Applied Surface Science, 2018, 427: 791-799.[27] Wang B, Cai H, Shen S. Single Metal Atom Photocatalysis [J]. Small Methods, 2019.[28] Kim G, Choi H J, Kim H I, et al. Temperature-boosted photocatalytic H2 production and charge transfer kinetics on TiO2 under UV and visible light [J]. Photochem Photobiol Sci, 2016, 15(10): 1247-1253.[29] Reszczyńska J, Grzyb T, Sobczak J W, et al. Visible light activity of rare earth metal doped (Er3 , Yb3 or Er3 /Yb3 ) titania photocatalysts [J]. Applied Catalysis B: Environmental, 2015, 163: 40-49.[30] Wang Z, Yang C, Lin T, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania [J]. Energy Environmental Science, 2013, 6(10): 3007.[31] Yang M Q, Gao M, Hong M, et al. Visible-to-NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar-Powered Environmental Purification and Fuel Production [J]. Advanced Materials, 2018, 30(47): e1802894.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。