铁基普鲁士蓝材料的制备及其电化学性能研究任务书

 2021-10-23 09:10

1. 毕业设计(论文)的内容和要求

本课题采用室温合成的技术,铁基普鲁士蓝材料的制备装置,通过研究温度、真空、溶液浓度等因素,结合现代分析技术,如SEM,粒径分布,初步探讨普鲁士蓝类材料结构和颗粒之间的关系。

最后把整个研究内容写成毕业论文。

毕业论文的内容和要求如下:(1)在第一章文献综述部分,通过文献阅读和总结分析,给出如下内容:钠离子电池的基本信息、正极材料的要求、普鲁士蓝类材料的简介和常见的制备技术研究进展、普鲁士蓝类材料的制备技术研究进展等,本课题拟开展的研究内容和预期目标。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求指标点2.3、10.2的要求,毕业论文期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的文献不少于20篇,其中英文文献不少于5篇。

以下是与本课题相关的部分文献列表,学生自己按需进行补充:[1] You Y, Yu X, Yin Y, et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries[J]. Nano Research, 2014, 8(1): 117-128.[2] Ge P, Hou H, Li S, et al. Tailoring Rod-Like FeSe2 Coated with Nitrogen-Doped Carbon for High-Performance Sodium Storage[J]. Advanced Functional Materials, 2018, 28(30).[3] Lee H, Jo E, Chung K Y, et al. In-depth TEM Investigation on Structural Inhomogeneity within a Primary LixNi0.835Co0.15Al0.015O2 Particle: Origin of Capacity Decay during High-rate Discharge[J]. Angew Chem Int Ed Engl, 2019.[4] Luo J, Sun S, Peng J, et al. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25317-25322.[5] Mao Y, Chen Y, Qin J, et al. Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode[J]. Nano Energy, 2019, 58: 192-201.[6] Wang H, Wang L, Chen S, et al. Crystallographic-plane tuned Prussian-blue wrapped with RGO: a high-capacity, long-life cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(7): 3569-3577.[7] Gao X, Wang B, Zhang Y, et al. Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage[J]. Energy Storage Materials, 2019, 16: 46-55.[8] Liu T, Zhang Y, Jiang Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environmental Science, 2019, 12(5): 1512-1533.[9] Wang J, Liu J, Chao D, et al. Self-Assembly of Honeycomb-like MoS2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium-Ion Storage[J]. Advanced Materials, 2014, 26(42): 7162-7169.[10] Shan X, Zhang S, Zhang N, et al. Synthesis and characterization of three-dimensional MoS2@carbon fibers hierarchical architecture with high capacity and high mass loading for Li-ion batteries[J]. J Colloid Interface Sci, 2018, 510: 327-333.[11] Hao J, Zheng J, Ling F, et al. Strain-engineered two-dimensional MoS2 as anode material for performance enhancement of Li/Na-ion batteries[J]. Sci Rep, 2018, 8(1): 2079.[12] Zhang L, Ji X, Ren X, et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies[J]. Adv Mater, 2018, 30(28): e1800191.[13] You Y, Yao H R, Xin S, et al. Subzero-Temperature Cathode for a Sodium-Ion Battery[J]. Adv Mater, 2016, 28(33): 7243-8.[14] Yang D, Xu J, Liao X Z, et al. Prussian blue without coordinated water as a superior cathode for sodium-ion batteries[J]. Chem Commun (Camb), 2015, 51(38): 8181-4.[15] Li W-J, Chou S-L, Wang J-Z, et al. Facile Method To Synthesize Na-Enriched Na1 xFeFe(CN)6 Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries[J]. Chemistry of Materials, 2015, 27(6): 1997-2003.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。