Fe含量对Ti-Fe合金α β相区热变形行为与组织的影响任务书

 2021-10-27 10:10

1. 毕业设计(论文)的内容和要求

随着科学技术的发展,钛及钛合金以其优异的力学性能、抗腐蚀性能和良好的生物相容性等综合性能而日益受到世界各国的重视,不仅广泛应用在航空航天领域,在民用领域的应用也得到开拓。

随着新型钛合金的不断发展,现有钛合金牌号已有数十种。

但由于其添加的合金化元素的成本往往较高,一定程度上阻碍了其在工业中的大规模应用。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 冶金工业出版社, 2009.[2]何春艳, 张利军. 国内外高温钛合金的发展与应用[J]. 世界有色金属, 2016, (01):21-25.[3] 彭昂, 毛振东. 钛合金的研究进展与应用现状[J]. 船电技术, 2012, 32(10): 57-60.[4]李献民, 刘立, 董洁,等. 钛及钛合金材料经济性及低成本方法论述[J]. 中国材料进展, 2015, 34(5):401-406.[5] 张平平, 王庆娟, 高颀, 等. 高强 β 钛合金研究和应用现状[J]. 热加工工艺, 2012,41(14): 51-55. [6] 吴欢,赵永庆,葛鹏, 等. β 稳定元素对钛合金 α 相强化行为的影响[J]. 稀有金属材料与工程, 2012, 41(5): 805-810.[7] 于振涛, 韩建业, 麻西群, 等. 生物医用钛合金材料的生物及力学相容性[J]. 中国组织工程研究, 2013, 17(25): 4707-4714.[8]辛社伟, 赵永庆, 曾卫东. 钛合金固态相变的归纳与讨论(Ⅱ)共析和有序化转变[J]. 钛工业进展, 2008, 25(1): 40-44.[9]赵永庆,刘军林,周廉. 典型 β 型钛合金元素 Cu, Fe 和 Cr 的偏析规律[J]. 稀有金属材料与工程, 2005, 34(4): 531-538.[10] Semiatin SL, Seetharaman V, Weiss I. Hot workability of titanium and titanium aluminide alloysan overview[J]. Materials Science and Engineering: A, 1998 Mar 15;243(1-2):1-24.[11]Azarbarmas M, Aghaie-Khafri M, Cabrera JM, Calvo J. Microstructural evolution and constitutive equations of Inconel 718 alloy under quasi-static and quasi-dynamic conditions[J]. Materials 94:28-38.[12]Xu XJ, Lin JP, Wang YL, Lin Z, Chen GL. Deformability and microstructure transformation of pilot ingot of Ti45Al(89) Nb(W, B, Y) alloy[J]. Materials Science and Engineering: A, 2006 Jan 25;416(1-2):98-103.[13]V. Yu Zadorozhnyy,A. Inoue,D. V. Louzguine-Luzgin. Ti-based nanostructured low-alloy with high strength and ductility[J]. Materials Science and Engineering: A, 2012, 551: 82-86.[14] A. R. Kilmametov,Yu Ivanisenko,A. A. Mazilkin et al,. The α→ω and β→ω phase transformations in TiFe alloys under high-pressure torsion[J]. Acta Materialia, 2018, 144: 337-351. [15]Chen R, Ma T, Guo J, Ding H, Su Y, Fu H. Deformation behavior and microstructural evolution of hydrogenated Ti44Al6Nb alloy during thermo-compression at 13731523 K[J]. Materials Design,2016,108:259-68.[16] Rahman M, Wang Z, Wong Y. A Review on High-Speed Machining of Titanium Alloys[J]. JSME International Journal Series C, 2006, 49(1):11-20.[17] Wang G, Hui S, Ye W, et al. Microstructure and tensile properties of low cost titanium alloys at different cooling rate[J]. Rare Metals, 2012, 31(6): 531-536.[18] Guo L, Fan X, Yu G, et al. Microstructure control techniques in primary hot working of titanium alloy bars: A review[J]. Chinese Journal of Aeronautics, 2016, 29(1): 30-40.[8] X.J. Xu, J.P. Lin, Y.L.Wang, Z. Lin, G.L. Chen, Deformability and microstructure transformation of pilot ingot of Ti-45Al-(8-9)Nb-(W,B,Y) alloy[J]. Materials Science and Engineering A, 2006, 416: 98103.[19] Savvakin D G, Carman A, Ivasishin O M, et al. Effect of iron content on sintering behavior of Ti-V-Fe-Al near-β titanium alloy[J]. Metallurgical and Materials Transactions A, 2012, 43(2): 716-723.[20] Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloysAn overview[J]. Materials Science and Engineering: A, 1999, 263(2): 243-256.[21] Gabriel S B, Dille J, Rezende M C, et al. Mechanical Characterization of Ti-12Mo-13Nb Alloy for Biomedical Application Hot Swaged and Aged[J]. Materials Research, 2015, 18:8-12.[22] Z. Du, S. Jiang, K. Zhang, The hot deformation behavior and processing map of Ti-47.5Al-Cr-V alloy[J]. Materials and Design, 2015, 86:464473.[23] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A, 1996, 213(1): 103-114.[24] D.Y. Zhang, H.Z. Li, X.P. Liang, Z.W.Wei, Y. Liu, Microstructure characteristic for high temperature deformation of powder metallurgy Ti-47Al-2Cr-0.2Mo alloy[J]. Materials and Design, 2014, 59: 415420. [25] Stefanie Sandlbes,Sandra Korte-Kerzel,Dierk Raabe. On the influence of the heat treatment on microstructure formation and mechanical properties of near-α Ti-Fe alloys[J]. Materials Science and Engineering: A, 2019, 748: 301-312.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。