Bi基电解质复合对La1.2Bi0.3Sr0.5Ni0.5Mn0.5O4 δ氧电极材料性能的影响任务书

 2021-10-22 09:10

1. 毕业设计(论文)的内容和要求

本课题通过固相法合成La1.2Bi0.3Sr0.5Ni0.5Mn0.5O4 δ与Bi基氧化物复合的氧电极。

研究烧结温度对晶体结构的影响,确定最佳烧结温度,进一步测试复合电极的电导率、热膨胀、微观结构,然后研究复合电极组装成的半电池的电化学性能,最后研究复合电极组装成的单电池的电解CO2性能以及稳定性并与La1.2Bi0.3Sr0.5Ni0.5Mn0.5O4 δ氧电极比较这些性能。

最后把整个研究内容写成毕业论文。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求,毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的英文文献不少于20篇,其中近5年不少于8篇,英文文献不少于5篇。

以下是与本课题相关的部分文献列表: [1].陈婷与王绍荣, 固体氧化物电解池电解水研究综述. 陶瓷学报, 2014. 35(01): 第1-6页.[2]. 范慧, 宋世栋与韩敏芳, 固体氧化物电解池共电解H_2O/CO_2研究进展. 中国工程科学, 2013. 15(02): 第107-112页.[3]. 葛奔等, 固体氧化物电解池技术应用研究进展. 科技导报, 2017. 35(08): 第37-46页.[4]. 张文强等, 高温固体氧化物电解水制氢技术. 化学进展, 2008(05): 第778-787页.[5]. 张磊, 涂正凯与乔瑜, 固体氧化物电解池共电解H_2O-CO_2的发展与应用研究. 可再生能源, 2018. 36(10): 第1554-1560页.[6]. 固体氧化物电解池_赵晨欢.[7]. Liu, Y., et al., Enhanced performance and stability of La2NiO4 δimpregnated La0.8Sr0.2Co0.8Ni0.2O3-δ oxygen electrodes for solid oxide electrolysis cells. Electrochimica Acta, 2019. 298: p. 852-857.[8]. Zheng, Y., et al., A Ca and Fe Co-Doped Layered Perovskite as Stable Air Electrode in Solid Oxide Electrolyzer Cells under High-Current Electrolysis. Electrochimica Acta, 2017. 251: p. 581-587.[9]. Yan, J., et al., Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell. Journal of Power Sources, 2016. 319: p. 124-130.[10]. Jiang, Z., et al., Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. International Journal of Hydrogen Energy, 2010. 35(15): p. 8322-8330.[11]. Ai, N., et al., Highly active and stable Er0.4Bi1.6O3 decorated La0.76Sr0.19MnO3 δnanostructured oxygen electrodes for reversible solid oxide cells. Journal of Materials Chemistry A, 2017. 5(24): p. 12149-12157.[12]. Vibhu, V., et al., La2Ni1CoO4 δ (x = 0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells. Journal of Power Sources, 2019. 444: p. 227292.[13]. Song, Y., et al., Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. Energy Storage Materials, 2018. 13: p. 207-214.[14]. Jiang, Y., et al., Sr2 Fe1.4Mn0.1Mo0.5O6δperovskite cathode for highly efficient CO2 electrolysis. Journal of Materials Chemistry A, 2019. 7(40): p. 22939-22949.[15]. Garali, M., et al., Synthesis, characterization and electrochemical properties of La2-xEuxNiO4 δRuddlesden-Popper-type layered nickelates as cathode materials for SOFC applications. International Journal of Hydrogen Energy, 2019. 44(21): p. 11020-11032. [16].Tian, Y., et al., A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. JOURNAL OF MATERIALS CHEMISTRY A, 2019. 7(11): p. 6395-6400.[17]. Zhu, Z., et al., Bismuth-doped La1.75Sr0.25NiO4 delta as a novel cathode material for solid oxide fuel cells. JOURNAL OF MATERIALS CHEMISTRY A, 2017. 5(27): p. 14012-14019.[18]. Jiang, Y., et al., Sr2Fe1.4Mn0.1Mo0.5O6-delta perovskite cathode for highly efficient CO2 electrolysis. JOURNAL OF MATERIALS CHEMISTRY A, 2019. 7(40): p. 22939-22949.[19].Yang, Y., et al., The electrochemical performance and CO2 reduction mechanism on strontium doped lanthanum ferrite fuel electrode in solid oxide electrolysis cell. ELECTROCHIMICA ACTA, 2018. 284: p. 159-167.[20]. Zhou, Y., et al., Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. NANO ENERGY, 2018. 50: p. 43-51.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。