1. 毕业设计(论文)的内容和要求
内容:钙-硫电池由于其具有能量高、成本低等优点受到了广泛关注。
但是不同电解液体系下与多硫化物溶解相关的硫氧化还原反应过程及反应动力学还不清晰,这极大的限制了钙-硫电池这一极具前景的能源储存新技术的实际应用、工业化生产变得遥不可及。
因此,探究二次有机电解液体系中钙-硫电池氧化还原反应过程及反应动力学,对设计具有高比容量、高循环稳定性的钙-硫电池,推进钙-硫电池实际应用进程具有极大意义。
2. 参考文献
[1] Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nature materials, 2017, 16(1): 16-22.[2] Song J, Sahadeo E, Noked M, et al. Mapping the challenges of magnesium battery[J]. The journal of physical chemistry letters, 2016, 7(9): 1736-1749.[3] Gummow R J, Vamvounis G, Kannan M B, et al. Calcium‐Ion Batteries: Current State‐of‐the‐Art and Future Perspectives[J]. Advanced Materials, 2018, 30(39): 1801702.[4] Lipson A L, Pan B, Lapidus S H, et al. Rechargeable Ca-ion batteries: A new energy storage system[J]. Chemistry of Materials, 2015, 27(24): 8442-8447.[5] Aurbach D, Skaletsky R, Gofer Y. The electrochemical behavior of calcium electrodes in a few organic electrolytes[J]. Journal of The Electrochemical Society, 1991, 138(12): 3536-3545.[6] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systemsthe solid electrolyte inter phase model[J]. Journal of The Electrochemical Society, 1979, 126(12): 2047-2051.[7] Ponrouch A, Frontera C, Bard F, et al. Towards a calcium-based rechargeable battery[J]. Nature materials, 2016, 15(2): 169.[8] Wang D, Gao X, Chen Y, et al. Plating and stripping calcium in an organic electrolyte[J]. Nature materials, 2018, 17(1): 16.
