基于多孔Co3O4中空纳米棒构建无酶葡萄糖传感器任务书

 2021-10-27 09:10

1. 毕业设计(论文)的内容和要求

内容:随着传感器发展的不断翻新,第四代无酶葡萄糖传感器 (NEG)因稳定性好,可重复性高,并且能在无酶的情况下直接检测葡萄糖等诸多优势已经成为当前葡萄糖传感器研究的热点之一。

它是一种在相关催化活性材料表面上直接发生葡萄糖分子的电催化氧化,再依据反应信号对其进行定性及定量检测的传感装置。

非酶葡萄糖生物传感器的性能在很大程度上取决于电极改性材料的电催化活性。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] G. Sparacino, M. Zanon, A. Facchinetti, C. Zecchin, A. Maran, C. Cobelli, Italian contributions to the development of continuous glucose monitoring sensors for diabetes management, Sensors, 2012, 12, 13753-13780. [2] N. Karikalan, M. Velmurugan, S. M. Chen, C. Karuppiah, Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor, Appl. Mater. Interfaces, 2016, 8, 22545-22553. [3] M. Baghayeri, A. Amiri, S. Farhadi, Development of non-enzymatic glucose sensor based on efficient loading Ag nanoparticles on functionalized carbon nanotubes, Sens. Actuators B: Chem., 2016, 225, 354-362. [4] X. R. Chen, D. Liu, G. J. Cao, Y. Tang, and C. Wu, In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums, ACS Appl. Mater. Interfaces, 2019, 11, 9374-9384. [5] J. Huang, X. L. Zhu, Y. M. Wang, J. H. Ge, J. W. Liu, J. H. Jiang, A multiplex paperbased nanobiocatalytic system for simultaneous determination of glucose and uric acid in whole blood, Analyst, 2018, 143, 4422-4428. [6] W. Q. Xie, Y. X. Gong, K. X. Yu, Rapid Quantitative Detection of Glucose Content in Glucose Injection by Reaction Headspace Gas Chromatography, J. Chromatogr. A, 2017, 1520, 143-146. [7] A. A. Shulga, A. P. Soldatkin, A. V. Elskaya, S. V. Dzyadevich, S. V. Patskovsky, V. I. Strikha, Thin-film conductometric biosensors for glucose and urea determination, Biosens. Bioelectron., 1994, 9, 217-223. [8] J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski, D. J. S. Birch, Fluorescence-based glucose sensors, Biosens. Bioelectron., 2005, 20, 2555-2565. [9] C. W. Tsao, Z. J. Yang, High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis. ACS Appl. Mater. Interfaces, 2015, 7, 22630-22637. [10] N. Daisuke, T. Yukikazu, W. Masayoshi, K. Kazunori, Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique, Angew. Chem., 2003, 115, 4329-4332. [11] N. S. Oliver, C. Toumazou, A. E. G. Cass, D. G. Johnston, Glucose sensors: a review of current and emerging technology, Diabet. Med., 2009, 26, 197-210. [12] N. I. Chandrasekaran, M. Matheswaran, A sensitive and selective non-enzymatic glucose sensor with hollow Ni-AlMn layered triple hydroxide nanocomposites modified Ni foam, Sens. Actuators B: Chem., 2019, 288, 188-194. [13] J. N. Xu, F. H. Li, D. D. Wang, M. H. Nawaz, Q. B. An, D. X. Han, L. Niu, Co3O4 nanostructures on flexible carbon cloth for crystal plane effect of nonenzymatic electrocatalysis for glucose, Biosens. Bioelectron., 2019, 123, 25-29. [14] J. He, Y. Zhong, Q. Xu, H. Sun, W. Zhou, Z. Shao, Nitrogen-doped graphic carbon protected Cu/Co/CoO nanoparticles for ultrasensitive and stable non-enzymatic determination of glucose and fructose in wine, J. Electrochem. Soc., 2018, 165, B543-B550. [15] Y. Su, H. Guo, Z. S. Wang, Y. M. Long, W. F. Li, Y. F. Tu, Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor, Sens. Actuators B: Chem., 2018, 255, 2510-2519. [16] S. Park, T. D. Chung, H. C. Kim, Nonenzymatic Glucose Detection Using Mesoporous Platinum, Anal. Chem., 2003, 75, 3046-3049. [17] Y. Ma, Y. Mao, Y. An, T. Tian, H. Zhang, J. Yan, Z. Zhu, C. J. Yang, Target-responsive DNA hydrogel for nonenzymatic and visual detection of glucose, Analyst, 2018, 143, 1679-1684.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。