基因失活对丙酮丁醇梭菌的生物膜和发酵性能的影响任务书

 2021-11-04 08:11

1. 毕业设计(论文)的内容和要求

内容:对基因敲除菌株进行发酵实验,验证发酵性能是否因基因失活而受到影响。

同时进行生物膜测定实验,检验基因敲除对生物膜形成能力的影响。

要求:掌握微生物实验的基本规范操作和遵守实验室的安全规章制度。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] ALSAKER K V, SPITZER T R, PAPOUTSAKIS E T. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress [J]. J Bacteriol, 2004, 186(7): 1959-71.[2] AL-SHORGANI N K N, ISA M H M, YUSOFF W M W, et al. Isolation of a Clostridium acetobutylicum strain and characterization of its fermentation performance on agricultural wastes [J]. Renewable Energy, 2016, 86(459-65.[3] AL-SHORGANI N K N, KALIL M S, YUSOFF W M W, et al. Biobutanol production by a new aerotolerant strain of Clostridium acetobutylicum YM1 under aerobic conditions [J]. Fuel, 2015, 158(855-63.[4] BAO G, DONG H, ZHU Y, et al. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance [J]. Biochem Biophys Res Commun, 2014, 450(4): 1612-8.[5] BRUDER M R, PYNE M E, MOO-YOUNG M, et al. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium [J]. Appl Environ Microbiol, 2016, 82(20): 6109-19.[6] CHARUBIN K, PAPOUTSAKIS E T. Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space [J]. Metab Eng, 2019, 52(9-19.[7] CHEN Y, ZHOU T, LIU D, et al. Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum [J]. Biotechnology and Bioprocess Engineering, 2013, 18(2): 234-41.[8] CHO C, LEE S Y. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs [J]. Biotechnol Bioeng, 2017, 114(2): 374-83.[9] CUI G Z, HONG W, ZHANG J, et al. Targeted gene engineering in Clostridium cellulolyticum H10 without methylation [J]. J Microbiol Methods, 2012, 89(3): 201-8.[10] CUI G Z, ZHANG J, HONG W, et al. Improvement of ClosTron for successive gene disruption in Clostridium cellulolyticum using a pyrF-based screening system [J]. Appl Microbiol Biotechnol, 2014, 98(1): 313-23.[11] CUI J, OLSON D G, LYND L R. Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum [J]. Metab Eng, 2019, 51(32-42.[12] DONG H, TAO W, ZHANG Y, et al. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering [J]. Metab Eng, 2012, 14(1): 59-67.[13] DURRE P. Physiology and Sporulation in Clostridium [J]. Microbiol Spectr, 2014, 2(4): TBS-0010-2012.[14] DURRE P, HOLLERGSCHWANDNER C. Initiation of endospore formation in Clostridium acetobutylicum [J]. Anaerobe, 2004, 10(2): 69-74.[15] EDWARDS A N, SUAREZ J M, MCBRIDE S M. Culturing and maintaining Clostridium difficile in an anaerobic environment [J]. J Vis Exp, 2013, 79): e50787.[16] FU H, YU L, LIN M, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose [J]. Metab Eng, 2017, 40(50-8.[17] GONZALEZ-PAJUELO M, MEYNIAL-SALLES I, MENDES F, et al. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol [J]. Metab Eng, 2005, 7(5-6): 329-36.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。