CoS2中空微纳米材料的合成及其葡萄糖无酶分析任务书

 2021-10-27 22:02:16

1. 毕业设计(论文)的内容和要求

内容:在过去的几年中,由于过渡金属硫化物在各个领域的潜在广泛应用,引起了巨大的研究兴趣。

此外,过渡金属硫化物纳米结构在环境修复方面的潜力引起了极大的关注。

其中,钴的硫化物由于在催化,超级电容器,染料敏化太阳能电池和锂离子电池中的潜在应用而引起了极大的研究兴趣[26]。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] WU W, MITRA N, YAN E C Y, et al. Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self-Regulated Insulin Release at Physiological pH[J]. ACS Nano, 2010, 4(8):4831-4839. [2] HU R, STEVENSON A C, LOWE C R. An acoustic glucose sensor[J]. Biosensors and Bioelectronics, 2012, 35(1):425-428. [3] PICKUP J C, HUSSAIN F, EVANS N D, et al. Fluorescence-based glucose sensors[J]. Biosensors and Bioelectronics, 2005, 20(12):2555-2565. [4] ZAIDI S A, SHIN J H. Recent developments in nanostructure based electrochemical glucose sensors[J]. Talanta, 2016, 149:30-42. [5] LI Y, XIE M, ZHANG X, et al. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection[J]. Sensors and Actuators B: Chemical, 2019, 278:126-132. [6] GIEROW P, JERGIL B. A spectrophotometric method for the determination of glucose-6-phosphatase activity[J]. Analytical Biochemistry, 1980, 101(2):305-309. [7] GUO Z-X, SHEN H-X, LI L. Spectrophotometric Determination of Hydrogen Peroxide and Glucose Based on Hemin Peroxidase-Like Catalyzed Oxidation of Bromopyrogallol Red[J]. Microchimica Acta, 1999, 131(3):171-176. [8] WILSON A M, WORK T M, BUSHWAY A A, et al. HPLC Determination of Fructose, Glucose, and Sucrose in Potatoes[J]. Journal of Food Science, 1981, 46(1):300-301. [9] ZHANG M F, LI Z L. A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC[J]. Food Chemistry, 2005, 90(4):785-790. [10] BEYLOT M, PREVIS S F, DAVID F, et al. Determination of the 13C-Labeling Pattern of Glucose by Gas Chromatography-Mass Spectrometry[J]. Analytical Biochemistry, 1993, 212(2):526-531. [11] BROKL M, SORIA A C, RUIZ-MATUTE A I, et al. Separation of disaccharides by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Application to honey analysis[J]. J Agric Food Chem, 2010, 58(22):11561-7. [12] KIM W B, LEE S H, CHO M, et al. Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor[J]. Sensors and Actuators B: Chemical, 2017, 249:161-167. [13] KIM S, LEE S H, CHO M, et al. Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor[J]. Biosens Bioelectron, 2016, 85:587-595. [14] WANG J. Electrochemical Glucose Biosensors[J]. Chemical Reviews, 2008, 108(2):814-825. [15] WANG W, ZHANG L, TONG S, et al. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination[J]. Biosensors and Bioelectronics, 2009, 25(4):708-714. [16] HWANG D W, LEE S, SEO M, et al. Recent advances in electrochemical non-enzymatic glucose sensors - A review[J]. Anal Chim Acta, 2018, 1033:1-34. [17] PARK S, PARK S, JEONG R-A, et al. Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt[J]. Biosensors and Bioelectronics, 2012, 31(1):284-291. [18] VASSILYEV Y B, KHAZOVA O A, NIKOLAEVA N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 196(1):105-125. [19] VASSILYEV Y B, KHAZOVA O A, NIKOLAEVA N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 196(1):127-144. [20] A. LAREW L, JOHNSON D C. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 262(1):167-182. [21] HOA L T, CHUNG J S, HUR S H. A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis[J]. Sensors and Actuators B: Chemical, 2016, 223:76-82. [22] KANG L, HE D, BIE L, et al. Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection[J]. Sensors and Actuators B: Chemical, 2015, 220:888-894. [23] WU W, YU B, WU H, et al. Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose[J]. Materials Science and Engineering: C, 2017, 70:430-437. [24] XU W, LU J, HUO W, et al. Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation[J]. Nanoscale, 2018, 10(29):14304-14313. [25] WU K-H, LENG X, GENTLE I R, et al. Enhanced Electroactivity of Facet-Controlled Co3O4 Nanocrystals for Enzymeless Biosensing[J]. Journal of Materials Science Technology, 2016, 32(1):24-27. [26] GUO Y-F, WANG Y-N, ZHENG J, et al. Self-templated synthesis of CoS2 hollow polyhedron with superior performance for removal of dye and heavy metal ion[J]. Journal of Alloys and Compounds, 2019, 776:36-42.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。