整合型木糖和阿拉伯糖利用谷氨酸棒杆菌的构建及发酵条件优化任务书

 2021-10-24 03:10

1. 毕业设计(论文)的内容和要求

(1)掌握文献查阅的一般方法,学会在中国期刊网、Web of Science科学引文索引、Springer Link电子期刊、Elsevier SDOS电子期刊等检索资源上查阅关于谷氨酸棒杆菌基因工程与代谢工程等的相关文献,并对谷氨酸棒杆菌发酵培养有全面了解。

(2)文献阅读及综述:阅读与课题相关的中英文文献,了解国内外的研究动态,撰写文献综述。

(3)明确实验任务,拟定实验方案:根据所查阅文献的内容,确定研究内容及方案,拟定科学可行的研究计划。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Chen Z, Huang J, Wu Y, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic engineering, 2017, 39: 151-158.[2] Jo S, Yoon J, Lee S M, et al. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production[J]. Journal of biotechnology, 2017, 258: 69-78.[3] Brsseler C, Radek A, Tenhaef N, et al. The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum[J]. Bioresource technology, 2018, 249: 953-961.[4] Lee J, Saddler J N, Um Y, et al. Adaptive evolution and metabolic engineering of a cellobiose-and xylose-negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose[J]. Microbial cell factories, 2016, 15(1): 20.[5] Mindt M, Heuser M, Wendisch V F. Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum[J]. Bioresource technology, 2019, 281: 135-142.[6] Zhang B, Gao G, Chu X H, et al. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose[J]. Bioresource technology, 2019, 284: 204-213.[7] Lee S S, Park J, Heo Y B, et al. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems[J]. Enzyme and microbial technology, 2020, 132: 109395.[8] Lee S S, Choi J, Woo H M. Bioconversion of Xylose to Ethylene Glycol and Glycolate in Engineered Corynebacterium glutamicum[J]. ACS omega, 2019.[9] Lange J, Mller F, Takors R, et al. Harnessing novel chromosomal integration loci to utilize an organosolv‐derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum[J]. Microbial biotechnology, 2018, 11(1): 257-263.[10] Wendisch V F, Jorge J M P, Prez-Garca F, et al. Updates on industrial production of amino acids using Corynebacterium glutamicum[J]. World Journal of Microbiology and Biotechnology, 2016, 32(6): 105.[11] Choi J W, Jeon E J, Jeong K J. Recent advances in engineering Corynebacterium glutamicum for utilization of hemicellulosic biomass[J]. Current opinion in biotechnology, 2019, 57: 17-24.[12] Tsuge Y, Kato N, Yamamoto S, et al. Enhanced production of d-lactate from mixed sugars in Corynebacterium glutamicum by overexpression of glycolytic genes encoding phosphofructokinase and triosephosphate isomerase[J]. Journal of bioscience and bioengineering, 2019, 127(3): 288-293.[13] Jorge J M P, Nguyen A Q D, Prez‐Garca F, et al. Improved fermentative production of gamma‐aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose[J]. Biotechnology and bioengineering, 2017, 114(4): 862-873.[14] Mao Y, Li G, Chang Z, et al. Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate[J]. Biotechnology for biofuels, 2018, 11(1): 95.[15] Baritugo K A, Kim H T, David Y, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution[J]. Microbial cell factories, 2018, 17(1): 129.[16] Brsseler C, Spth A, Sokolowsky S, et al. Alone at last!Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum[J]. Metabolic engineering communications, 2019, 9: e00090.[17] Zhao N, Qian L, Luo G, et al. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum[J]. Applied microbiology and biotechnology, 2018, 102(22): 9517-9529.[18] Kim D, Woo H M. Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories[J]. Applied microbiology and biotechnology, 2018, 102(22): 9471-9480.[19] Baritugo K A G, Kim H T, David Y C, et al. Recent advances in metabolic engineering of Corynebacterium glutamicum as a potential platform microorganism for biorefinery[J]. Biofuels, Bioproducts and Biorefining, 2018, 12(5): 899-925.[20] Wendisch V F, Brito L F, Lopez M G, et al. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources[J]. Journal of biotechnology, 2016, 234: 139-157.[21] Becker J, Rohles C M, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products[J]. Metabolic engineering, 2018.[22] Valdehuesa K N G, Ramos K R M, Nisola G M, et al. Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms[J]. Applied microbiology and biotechnology, 2018, 102(18): 7703-7716.[23] Wen J, Bao J. Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn stover hydrolysate[J]. Biotechnology for biofuels, 2019, 12(1): 86.[24] Zhang B, Ren L Q, Yu M, et al. Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114[J]. Bioresource technology, 2018, 250: 60-68.[25] Wen J, Xiao Y, Liu T, et al. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum[J]. Biotechnology for biofuels, 2018, 11(1): 132.[26] Kawaguchi H, Yoshihara K, Hara K Y, et al. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of d-glucose and l-arabinose[J]. Microbial cell factories, 2018, 17(1): 76.[27] Becker J, Gieelmann G, Hoffmann S L, et al. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering[M]//Synthetic biologymetabolic engineering. Springer, Cham, 2016: 217-263.[28] Baritugo K A G, Kim H T, David Y C, et al. Recent advances in metabolic engineering of Corynebacterium glutamicum as a potential platform microorganism for biorefinery[J]. Biofuels, Bioproducts and Biorefining, 2018, 12(5): 899-925.[29] Lubitz D, Jorge J M P, Prez-Garca F, et al. Roles of export genes cgmA and lysE for the production of l-arginine and l-citrulline by Corynebacterium glutamicum[J]. Applied microbiology and biotechnology, 2016, 100(19): 8465-8474.[30] Dele-Osibanjo T, Li Q, Zhang X, et al. Growth-coupled evolution of phosphoketolase to improve l-glutamate production by Corynebacterium glutamicum[J]. Applied microbiology and biotechnology, 2019, 103(20): 8413-8425.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。