基于金属矩形孔阵列的偏振片研究任务书

 2021-10-24 03:10

1. 毕业设计(论文)的内容和要求

本课题主要利用CST MicroStudio软件理论研究基于金属矩形孔阵列的偏振片的相关效应,主要研究内容如下:1. 研究入射为偏振光时,同偏振和交叉偏振的透射系数;2. 入射光为偏振光是的消光比;3. 入射波偏振方向与透振方向不同夹角θ时,透射效率T随频率f变化关系4. 电磁、磁场和电流分布图;

2. 参考文献

1. A. R. Chraplyvy, High-capacity lightwave transmission experiments, Bell Labs Tech. J. 4(1), 230245 (1999).2. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, A photonic crystal fiber sensor for pressure measurements, IEEE Trans. Instrum. Meas. 55(4), 11191123 (2006).3. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, An overview of fiber-optic gyroscopes, J. Lightwave Technol. 2(2), 91107 (1984).4. W. Jacobsen, J. Mayfield, P. Fournier, D. Bolte, H. Elmaola, C. H. Wang, G. Drenzek, and A. Soufiane, Singlepolarization fiber, Verrillon Inc., US Patent 8,369,672 B2, (2013).5. D. A. Nolan, G. E. Berkey, M. J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, Single-polarization fiber with a high extinction ratio, Opt. Lett. 29(16), 18551857 (2004).6. P. Russell, Photonic crystal fibers, J. Lightwave Technol. 24(12), 47294749 (2006).7. K. Saitoh and M. Koshiba, Single-polarization single-mode photonic crystal fibers, IEEE Photon. Technol. Lett. 15(10), 13841386 (2003).8. J. Ju, W. Jin, and M. S. Demokan, Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm, J. Lightwave Technol. 24(2), 825830 (2006).9. F. Zhang, M. Zhang, X. Liu, and P. Ye, Design of wideband single-polarization single-mode photonic crystal fiber, J. Lightwave Technol. 25(5), 11841189 (2007).10. M. Y. Chen, B. Sun, and Y. K. Zhang, Broadband single-polarization operation in square-lattice photonic crystal fibers, J. Lightwave Technol. 28(10), 14431446 (2010).11. V. A. Serro and M. A. R. Franco, A new approach to obtain single-polarization hollow-core photonic bandgap fiber, Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879428 (2013).12. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, Absolutely single polarization photonic crystal fiber, IEEE Photon. Technol. Lett. 16(1), 182184 (2004).13. G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, Polarizing photonic crystal fiber with lowindex inclusion in the core, J. Opt. 12(7), 075402 (2010).14. X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, Tunable single-polarization single mode photonic crystal fiber based on liquid infiltrating, IEEE Photon.Technol. Lett. 23, 709711 (2011).15. A. V. Y. Espinel, M. A R. Franco, and C. M. B. Cordeiro, Tunable single-polarization single-mode microstructure polymer optical fiber, J. Lightwave Technol. 29(16), 23722378 (2011).16. W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, Partially liquid-filled hollow-core photonic crystal fiber polarizer, Opt. Lett. 36(16), 32963298 (2011).17. A. C. Sodr, Jr., A. R. Nascimento, Jr., M. A. R. Franco, I. Oliveira, V. A. Serro, and H. L. Fragnito, Numerical and experimental analysis of polarization properties from hybrid PCFs across different photonic bandgaps, Opt. Fiber Technol. 18(6), 462469 (2012).18. P. Romagnoli, C. R. Biazoli, M. A. R. Franco, C. M. B. Cordeiro, and C. J. S. de Matos, Generation of polarizing sections in highly birefringent photonic crystal fibers via post-processing, in CLEO:2013, (OpticalSociety of America, 2013), paper JTu4A.12.19. T. A. Birks and Y. W. Li, The shape of fiber tapers, J. Lightwave Technol. 10(4), 432438 (1992).20. J. Ju, W. Jin, and Y. Yang, Introduction of birefringence into photonic crystal fibers, Proc. SPIE 7753, 21st International Conference on Optical Fiber Sensors, 77536J (2011).21. I. H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55(10), 12051209 (1965).22. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. S. de Matos, In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber, Opt. Express 19(4), 31243129 (2011).23. COMSOL 3.4, Comsol Multiphysics, http://www.comsol.com.24. N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy, Nano Lett. 10(12),49524955 (2010).25. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter, Nano Lett. 9(12), 45054509 (2009).26. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Optical antennas direct single-molecule emission, Nat. Photon. 2(4), 234237 (2008).27. E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, Spatial polarization sensitivity of single Au bowtie nanostructures, J. Lumin. 131(9), 19711974 (2011).28. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Degree of polarization for optical near fields, Phys. Rev. 66(1), 016615 (2002).29. T. Funk, A. Deb, S. J. George, H. Wang, and S. P. Cramer, X-ray magnetic circular dichroism-a high energy probe of magnetic properties, Coordin. Chem. Rev. 249(1), 330 (2005).30. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, Polarization conversion with elliptical patch nanoantennas, Appl. Phys. Lett. 101(2), 023101 (2012).

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。