不同填料在模拟雨水生物滤池中对重金属去除特征研究任务书

 2021-08-20 12:08

1. 毕业设计(论文)主要目标:

本文拟通过对不同填料雨水生物滤池对重金属的去除特征研究,明确不同填料雨水生物滤池对重金属的去除性能。主要目标有:

1、确定可用于重金属去除的材料,有五种,分别是盆栽土壤、堆肥、椰子堆、污泥和工业混合料。

2、确定这五种物质作为填料的性能。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 毕业设计(论文)主要内容:

本论文主要研究不同填料雨水生物滤池对重金属的去除特征,主要研究内容包括:

1、搜集用于实验的不同填料。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 主要参考文献

  1. Acheampong, M.A., Pakshirajan, K., Annachhatre, A.P., Lens, P.N.L., 2012. Removal of Cu (II) by biosorption onto coconut shell in fixed-bed column systems. J. Ind. Eng. Chem. http://dx.doi.org/10.1016/j.jiec.2012.10.029.
  2. Anirudhan, T.S., Sreekumari, S.S., 2011. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23, 1989e1998.
  3. Barbosa, A.E., Fernandes, J.N., David, L.M., 2012. Key issues in sustainable urban stormwater management. Water Res. 46, 6787e6798.
  4. Bhatnager, A., Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R., 2010. Coconut-based biosorbents for water treatment- a review of the recent literature. Adv. Colloid Interfac. 100, 1e15.
  5. Blecken, G.-T., Marsalek, J., Viklander, M., 2011. Laboratory study of stormwa-terbiofiltration in low temperatures: total and dissolved metal removals and fates. Water Air Soil Poll. 219, 303e317.
  6. Blecken, G.-T., Zinger, Y., Deletic, A., Fletcher, T.D., Viklander, M., 2009. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters. Water Res. 43, 4590e4598.
  7. Chiang, Y.W., Ghyselbrecht, K., Santos, R.M., Martens, J.A., Swenne, R., Cappuyns, V., Meesschaert, B., 2012. Adsorption of multi-heavy metals onto water treatment residuals: sorption capacities and applications. Chem. Eng. J. 200e202, 405e415.
  8. Chui, P.C., 1997. Characteristics of stormwater quality from two urban watersheds in Singapore. Environ. Monit. Assess. 44, 173e181.
  9. Davis, A.P., Hunt, W.F., Traver, R.G., Clar, M., 2009. Bioretention technology: over-view of current practice and future needs. J. Environ. Eng. ASCE 135, 109e117.
  10. Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., 2001. Laboratory study of bio-logical retention for urban stormwater management. Water Environ. Res. 73, 5e14.
  11. Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., Winogradoff, D., 2003. Water quality improvement through bioretention: lead, copper and zinc removal. Water Environ. Res. 75, 73e81.
  12. Denef, K., Six, J., Bossuyt, H., Frey, S.D., Elliott, E.T., Merckx, R., Paustian, K., 2001. Influence of dry-wet cycles on the interrelationship between aggregate, par-ticulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599e1611.
  13. Dietz, M.E., Clausen, J.C., 2006. Saturation to improve pollutant retention in a rain garden. Environ. Sci. Technol. 40, 1335e1340.
  14. Feng, W., Hatt, B.E., McCarthy, D.T., Fletcher, T.D., Deletic, A., 2012. Biofilters for stormwater harvesting: understanding the treatment performance of key metals that pose a risk for water use. Environ. Sci. Technol. 46, 5100e5108.
  15. Gadd, G.M., 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Bio-technol. 84, 13e28.
  16. Hasany, S.M., Ahmad, R., 2006. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmental protection. J. Environ. Manage. 81, 286e295.
  17. Hatt, B.E., Fletcher, T.D., Deletic, A., 2007a. Hydraulic and pollutant removal per-formance of stormwater filters under variable wetting and drying regimes. Water Sci. Technol. 56, 11e19.
  18. Hatt, B.E., Deletic, A., Fletcher, T.D., 2007b. Stormwater reuse: designing biofiltration systems for reliable treatment. Water Sci. Technol. 55, 201e209.
  19. Hatt, B.E., Fletcher, T.D., Deletic, A., 2008. Hydraulic and pollutant removal perfor-mance of fine media stormwater filtration systems. Environ. Sci. Technol. 42, 2535e2541.
  20. Hsieh, C.H., Davis, A.P., 2005. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. ASCE 131, 1521e1531.
  21. Ippolito, J.A., Barbarick, K.A., Elliott, H.A., 2011. Drinking water treatment residuals:
  22. a review of recent uses. J. Environ. Qual. 40, 1e12.
  23. Jang, A., Seo, Y., Bishop, P.L., 2005. The removal of heavy metals in urban runoff by sorption on mulch. Environ. Pollut. 133, 117e127.
  24. Joshi, U.M., Balasubramanian, R., 2010. Characteristics and environmental mobility of trace elements in urban runoff. Chemosphere 80, 310e318.
  25. Kazemi, F., Beecham, S., Gibbs, J., 2011. Streetscape biodiversity and the role of bioretention swales in an Australian urban environment. Lands. Urban Plan. 101, 139e148.
  26. Laurenson, G., Laurenson, S., Bolan, N., Beecham, S., Clark, I., 2013. The role of bioretention systems in the treatment of stormwater. In: Sparks, D.L. (Ed.), Advances in Agronomy, vol. 120. Elsevier Inc, PA., pp. 223e274.
  27. Le Coustumer, S., Fletcher, T.D., Deletic, A., Barraud, S., Poelsma, P., 2012. The in-fluence of design parameters on clogging of stormwater biofilters: a large-scale column study. Water Res. 46, 6743e6752.
  28. Makris, K.C., OConnor, G.A., 2007. Beneficial utilization of drinking-water treatment residuals as contaminant-mitigating agents. In: Sarkar, D., Datta, R., Hannigan, R. (Eds.), Developments in Environmental Science Volume 5 Con-cepts and Applications in Environmental Geochemistry. Elsevier Ltd., Amster-dam, pp. 609e635.
  29. McLaughlan, R.G., Al-Mashaqbeh, O., 2009. Effect of media type and particle size on dissolved organic carbon release from woody filtration media. Bioresour. Technol. 100, 1020e1023.
  30. Mopper, K., Qian, J., 2006. Water analysis: organic carbon determinations. In: Meyers, R.A. (Ed.), Encyclopaedia of Analytical Chemistry. John Wiley Sons, Ltd., New York, pp. 1e9.
  31. Muthanna, T.M., Viklander, M., Gjesdahl, N., Thorolfsson, S.T., 2007. Heavy metal removal in cold climate bioretention. Water Air Soil Poll. 183, 391e402.
  32. Park, J.H., Lamb, D., Paneerselvama, P., Choppala, G., Bolan, N., Chung, J.-W., 2011. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard Mater. 185, 549e574.
  33. Pino,~ G.H., de Mesquita, L.M.S., Torem, M.L., Pinto, G.A.S., 2006. Biosorption of cadmium by green coconut shell powder. Min. Eng. 19, 380e387.
  34. Public Utilities Board (PUB), 2011. Engineering Procedures for ABC Waters Design Features. PUB Singapore, Available: http://www.pub.gov.sg/abcwaters/abcwate rsdesignguidelines/Pages/ABCDesignGuidelines.aspx.
  35. Quek, S.Y., Al-Duri, B., Wase, A.J., Forster, C.F., 1998. Coir as a biosorbent of copper and lead. Process Saf. Environ. 76, 50e54.
  36. Roy-Poirier, A., Champagne, P., Fillion, Y., 2010. Review of bioretention system research and design: past, present and future. J. Environ. Eng. ASCE 136, 878e889.
  37. Sansalone, J.J., Buchberger, S.G., 1997. Partitioning and first flush of metals in urban roadway storm water. J. Environ. Eng. ASCE 123, 134e143.
  38. Seelsaen, N., McLaughlan, R., Moore, S., Stuetz, R.M., 2007. Influence of compost characteristics on heavy metal sorption from synthetic stormwater. Water Sci. Technol. 55, 219e226.
  39. Siriwardene, N.R., Deletic, A., Fletcher, T.D., 2007. Clogging of stormwater gravel infiltration systems and filters: insights from a laboratory study. Water Res. 41, 1433e1440.
  40. Sousa, F.W., Oliveira, A.G., Ribeiro, J.P., Rosa, M.F., Keukeleire, D., Nascimento, R.F., 2010. Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J. Environ. Manage. 91, 1634e1640.
  41. Sud, D., Mahajan, G., Kaur, M.P., 2008. Agriculture waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions e a re-view. Bioresour. Technol. 99, 6017e6027.
  42. Sun, X., Davis, A.P., 2007. Heavy metal fates in laboratory bioretention systems.
  43. Chemosphere 66, 1601e1609.
  44. Toribio, M., Romanya, J., 2006. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils. Sci. Total Environ. 363, 11e21.
  45. World Health Organisation (WHO), 2011. Guidelines for Drinking-water Quality, fourth ed. WHO, Geneva, Switzerland.
  46. Yin, Y., Impellitteri, C.A., You, S.-J., Allen, H.E., 2002. The importance of organic matter distribution and extract soil solution ratio on the desorption of heavy metals from soils. Sci. Total Environ. 287, 107e119.
  47. Yuen, J.Q., Olin, P.H., Lim, H.S., Benner, S.G., Sutherland, R.A., Ziegler, A.D., 2012. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighbourhoods of Singapore. J. Environ. Manage. 101, 151e163.
  48. 林叶. 基于生态视角的建筑废弃物资源化产业发展研究[D].重庆大学,2014.
  49. The Study of Con structi on Waste.L I Yi ng, XU Shao hua,2007
  50. EllisJB,RevittDM,HarropDO,etal.The contribution of Highway surfaces to urban storm water sediments and metalloadings[J].ScienceofTotalEnvironment,1987,59:339-349.
  51. 李海燕,胡磊,王崇臣.道路雨水径流重金属含量测定[J].环境化学,2009,28(1):145-14
  52. 侯培强,任玉芬,王效科,等.北京市城市降雨径流水质评价研究[J].环境科学,2012,33(1):71-74.
  53. 郭婧,马琳,史鑫源,等.北京城市道路降雨径流监测与分析[J].环境化学,2011,30(10):1814-1815.
  54. 聂发辉,李田,王朔.上海市公路雨水径流中重金属的形态及分布特征[J].湖南大学学报(自然科学版),2009,36(3):76-80.
  55. 李倩倩,李铁龙,赵倩倩,等.天津市路面雨水径流重金属污染特征[J].生态环境学报,2011,20(1):143-148.
  56. 林莉峰,李田,李贺.上海市城区非渗透性地面径流的污染特性研究[J]
  57. 环境科学,2007,28(7):1430-1434.王华,马宁,杨晓静,等.成都市雨水中的重金属特征[J].地球与环境,2010,38(1):52-56.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。