全文总字数:4737字
1. 毕业设计(论文)主要内容:
二氧化碳(CO2)催化还原面临的重大科学技术难题是催化还原CO2产品选择性差,催化剂稳定性差及催化效率低,其原因之一是传统使用的块体催化剂往往存在电流密度低、过电势高、产物选择性差、容易失活等缺点以及传统的二维材料电子传导能力差。考虑到新型过渡双金属碳化物(MXene)具有本征纳米级层状结构、巨大的比表面积和良好的亲水性,优异的导电性,使得其在催化还原CO2方面有着巨大的潜力;本项目将以纳米双金属MXene为主要研究对象,通过第一性原理计算系统研究缺陷诱导的双金属MXene对CO2捕获与转化中电传输机制的调控、CO2光催化还原反应的热-动力学的相关性,深化理解CO2转化机理,为研发高性能CO2捕获与转化的催化剂和探索催化反应的高效化方法提供指导。
论文的主要研究内容:1.对国内外相关文献进行深入调研,对CO2捕捉与转化的机理进行了解,了解选题对社会、健康、安全、成本以及环境等因素的关系;
2.熟悉和利用计算材料模拟软件CASTEP,并利用CASTEP搭建计算模型;
2. 毕业设计(论文)主要任务及要求
1.调研、查阅与课题有关的书籍和相关资料,了解双金属MXene的结构以及CO2催化还原研究进 展;熟悉密度泛函原理和分子动力学原理;熟悉MS和castep程序包的使用;制定详细的研究方案,查阅不少于15篇相关文献资料,其中近5年英文文献不少于3篇,了解国内外相关研究概况和发展趋势,了解选题对社会、健康、安全、成本以及环境等的影响,完成开题报告;2、完成不少于5000汉字的英文文献翻译; 3.构筑CO2@双金属MXene结构,利用第一性原理程序包castep优化复合体系的几何结构,计算CO2分子在双金属MXene的吸附能以及复合体系的电子结构;4. 利用castep计算CO2分子在缺陷调制的双金属MXene上的催化还原的性能表征,以及反应机制,获得CO2还原反应规律;5.整理数据,撰写不少于12000字的毕业论文,论文中涉及参考文献不少于15篇,其中外文文献不少于5篇
3. 毕业设计(论文)完成任务的计划与安排
1. 第1-4周:调研、查阅与课题有关的书籍和相关资料,了解双金属MXene材料的结构 以及研究进展;熟悉密度泛函原理和分子动力学原理;熟悉MS和castep程序包的使用;
2. 第2-8周:构筑CO2/双金属MXene结构,利用第一性原理程序包castep优化复合体系的几何结构,计算CO2在双金属MXene的吸附能以及复合体系的电子结构;
3. 第3-12周:计算CO2在缺陷调制的双金属MXene上的催化还原的性能表征,以及反应机制,获得CO2RR反应规律;
4. 主要参考文献
1. Bo Ding, Wee-Jun Ong, Jizhou Jiang, Xingzhu Chen, Neng Li*, Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M= Ti, Mo), Applied surface science, 2019, 10.1016/j.apsusc.2019.1439872. Luna Tie, Neng Li*, Chongfei Yu, Yanmei Liu, Siyu Yang, Hui Chen, Shuying Dong, Jingyu Sun, Shi Xue Dou, Jianhui SunSelf-Supported Nonprecious MXene/Ni3S2 Electrocatalysts for Efficient Hydrogen Generation in Alkaline Media, ACS Appl. Energy Mater., 2019, 296931-69383. Qingwen Guan, Junfei Ma, Wenjing Yang, Rui Zhang, Xiaojie Zhang, Xiaoxiao Dong, Yuting Fan, Lulu Cai*, Yi Cao, Yilin Zhang, Neng Li*, Quan Xu, Highly Fluorescent Ti3C2 MXene Quantum Dots for Macrophage Labeling and Cu2 Ion Sensing, Nanoscale, 2019,11, 14123-141334. Jiahe Peng, Xingzhu Chen, Wee-Jun Ong, Xiujian Zhao, Neng Li*, Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro-and Photocatalysis, Chem 5, 1–33 (2019)5. Zhouzhou Kong, Xingzhu Chen, Wee-Jun Ong*, Xiujian Zhao, Neng Li*, Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis, Applied Surface Science, 2019, 463, 1148-1153.6. Bin Huang, Naigen Zhou, Xingzhu Chen, Wee-Jun Ong*, Neng Li*, Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition metal carbonitrides (MXene), Chemistry: A European Journal, 2019, 24, 69, Special Issue: Renewable Energy, 18479-18486.7. Quan Xu, Lan Ding, Yangyang Wen, Wenjing Yang, Hongjun Zhou, Xingzhu Chen, Jason Street, Aiguo Zhou, Wee-Jun Ong and Neng Li*, High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots, J. Mater. Chem. C, 2018, 6, 6360-63698. Neng Li, Xingzhu Chen, Wee-Jun Ong, Douglas R. Macfarlane, Xiujian Zhao, Anthony K. Cheetham, Chenghua Sun*, Understanding of Electrochemical Mechanisms for CO2 Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes), ACS Nano 2017, 11, 11, 10825-10833[9] Naguib M, Kurtoglu M, Presser V, et al. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248-4253.[10] Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6 (2): 1322-1331.[11] Sun Z. Progress in research and development on MAX phases: a family of layered ternarycompounds[J]. International Materials Reviews, 2011, 56 (3): 143-166.[12] Barsoum M W. The MN 1AXN phases: A new class of solids: Thermodynamically stablenanolaminates[J]. Progress in solid state chemistry, 2000, 28 (1-4): 201-281.[13] Li N, Mo Y, Ching W-Y. The bonding, charge distribution, spin ordering, optical, and elastic properties of four MAX phases Cr2AX (A= Al or Ge, X= C or N): From density functional theory study[J]. Journal of Applied Physics, 2013, 114 (18): 183503.[14] Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides[J]. Advanced Functional Materials, 2013, 23 (17): 2185-2192.[15] Lai S, Jeon J, Jang S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T:–OH,–F and–O)[J]. Nanoscale, 2015, 7 (46): 19390-19396.
