高温陶瓷基复合材料制备工艺与烧蚀机理研究进展任务书

 2021-11-20 10:11

1. 毕业设计(论文)主要内容:

被动热防护方案(热结构)是目前超燃冲压发动机燃烧室的主要研制方案之一,在该方案中,传统的金属材料已很难满足此类要求,而陶瓷基复合材料有望满足此类发动机燃烧室的使用要求。碳纤维增强碳化硅陶瓷基复合材料在1500℃以下,可以长寿命服役,但是在 1500℃以上的长时抗氧化技术,特别是在燃烧室的含水氧化气氛下的抗氧化技术尚不成熟,无法达到超燃冲压发动机燃烧室的使用要求。对碳纤维增强碳化硅材料进行超高温陶瓷基体改性,能够提高材料的抗氧化耐烧蚀性能,改善其在高温有氧环境中的可靠性和稳定性。本文将讨论高温陶瓷基复合材料的烧蚀机理,并结合社会、健康、安全、成本以及环境等因素综合分析高温陶瓷基复合材料在航空航天领域的应用。设计(论文)主要内容:1.文献调研,了解国内外关于碳纤维增强碳化硅陶瓷基复合材料的应用背景、研究概况和发展趋势,以及PIP工艺对碳纤维增强碳化硅陶瓷基复合材料结构的影响,了解碳纤维增强碳化硅陶瓷基复合材料与社会、健康、安全、成本以及环境等因素的关系;2.在调研陶瓷基复合材料的基础上,通过Si、Zr 等元素及化合物改性制备复合材料,调研分析不同形式的超高温陶瓷以及陶瓷组分比例对其高温抗氧化耐烧蚀性能的影响规律;3.改性方法、改性效果与改性机理分析;4.综述各类方法,提出未来自己的研究设计方案;5.分析数据,撰写毕业论文。

2. 毕业设计(论文)主要任务及要求

1. 查阅不少于15篇的参考文献(其中近5年英文文献不少于3篇),了解国内外相关研究概况和发展趋势,了解选题对社会、健康、安全、成本以及环境等的影响,完成开题报告;2. 掌握陶瓷基复合材料不同的制备技术;3. 获得改性方法与性能关系;4. 获得改性机理,分析方法的优缺点,提出自己的改性方案;5. 完成不少于5000字的英文文献翻译;6. 总结国内外相关研究概况和发展趋势,总结选题对社会、健康、安全、成本以及环境等的影响,分析实验数据,撰写毕业论文,字数不少于1.2万字。

3. 毕业设计(论文)完成任务的计划与安排

第1-3周:查阅相关文献资料,完成英文翻译。明确研究内容,了解研究进展,并完成开题报告。第4-5周:按照设计方案,完成文献调研,综合判断分析。第6-11周:深入分析改性机理与效果。第12-14周:总结数据,提出自己实验方案,完成并修改毕业论文。第15周:论文答辩。

4. 主要参考文献

[1]Ding J*, Huang Z, Qin Y, et al. Improved ablation resistance of carbon–phenolic composites by introducing zirconium silicide particles[J]. Composites Part B: Engineering, 2015, 82: 100-107.[2]Ding J*, Tao Yang, Zhixiong Huang, Yan Qin, Yanbing Wang, Thermal stability and ablation resistance, and ablation mechanism of carbon–phenolic composites with different zirconium silicide particle loadings[J], Composites Part B: Engineering, 2018,154:313-320.[3]Ding J*, Jiamin Sun, Zhixiong Huang, Yanbing Wang, Improved high-temperature mechanical property of carbon-phenolic composites by introducing titanium diboride particles[J], Composites Part B: Engineering, 2019, 157:289-294.[4]Haitao Luo, Ding J*, Zhixiong Huang, Tao Yang, Investigation of properties of nano-silica modified epoxy resin films and composites using RFI technology[J], Composites Part B: Engineering, 2018, 155:288-298.[5]Jiang X, Fei C, Qiu W et al. Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells[J]. Solar Energy Materials Solar Cells, 2010, 94(12):2223-2229.[6]Wang J R, Wan F, Lü Q F. Self-Nitrogen-Doped Porous Biochar Derived from Kapok ( Ceiba Insignis ) Fibers: Effect of Pyrolysis Temperature and High Electrochemical Performance[J]. Journal of Materials Science Technology, 2018, 34(10):S1005030218300069.[7]Fei C, Qiang S, Schoenung J M, et al. Synthesis and Pressureless Sintering of Zirconium Phosphate Ceramics[J]. Journal of the American Ceramic Society, 2010, 91(10):3173-3180.[8] Ding J*, Huang Z, Luo H, et al. Preparation and thermal stability of boron-containing phenolic resin/microcrystalline muscovite composites[J]. Materials Research Innovations, 2015, 19: 440-444.[9] Ding J*, Huang Z, Luo H, et al. The role of microcrystalline muscovite to enhance thermal stability of boron-modified phenolic resin, structural and elemental studies in boron-modified phenolic resin/microcrystalline muscovite composite[J]. Materials Research Innovations, 2015, 19: 605-610.[10] Huang Z X*, Ding J, Qin Y, et al. Studies on Pyrolysis Behaviour of Boron-Containing Phenolic Resin/High-Silica Fiberglass Fabric Ceramifying Composites. Advanced Materials Research. 2013, 716: 304-309.[11] Qin Y*, Ding J, Huang Z X, et al. Microstructure and oxidation resistance of muscovite-glass frits loaded high silica cloth/boron-containing phenol-formaldehyde resin-based ceramifying composites. Applied Mechanics and Materials. 2013, 319: 34-38.[12] Huang, C., Huang, Z. *, Qin, Y., Ding, J., Lv, X. . Huang C, Huang Z, Qin Y, et al. Mechanical and dynamic mechanical properties of epoxy syntactic foams reinforced by short carbon fiber[J]. Polymer Composites, 2016, 37(7):2118-2134(17).[13]Xiao W, Huang Z*, Ding J. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric[C]// Materials Science and Engineering Conference Series. Materials Science and Engineering Conference Series, 2017:012013.[14]Huang Z*, Ding J, Yan Q, et al. Preparation of ZrSi_2/boron-modified phenolic foam and strengthen mechanism of pyrolytic product[J]. Acta Materiae Compositae Sinica, 2016.[15] Huang C*, Qin Y, Huang Z X, Ding J. Recent modification research progress of phenolic-based ablative materials[J]. Journal of Wuhan University of Technology, 2014.[16] Zheng Z Y, Huang Z X*, Ding J, et al. CONDITIONS ON VOLATILE CONTENT ANALYSIS OF PHENOLIC-BASED PREPREG[J]. Fiber Reinforced Plastics/composites, 2015.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。