一种适用于超级电容器柔性可拉伸聚合物电解质的设计与制备任务书

 2021-11-05 19:14:08

1. 毕业设计(论文)的内容和要求

本课题将通过一步聚合交联的方法制备聚合物离子液体凝胶作为新型柔性超级电容器的柔性电解质。

合理调控离子液体与聚合物之间的相互作用和相容性,提高离子凝胶的力学性能。

最后把整个研究内容写成毕业论文。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求指点10.2,毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的英文文献不少于20篇,其中近5年不少于8篇,英文文献不少于5篇。

以下是与本课题相关的部分文献列表:[1] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025-4031.[2] B. Xie, C. Yang, Z. Zhang, P. Zou, Z. Lin, G. Shi, Q. Yang, F. Kang, C.P. Wong, Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics, ACS Nano 9 (2015) 5636-5645.[3] K. Xiao, L.X. Ding, G. Liu, H. Chen, S. Wang, H. Wang, Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors, Adv. Mater. 28 (2016) 5997-6002.[4] K. Qi, R.Z. Hou, S. Zaman, Y.B. Qiu, B.Y. Xia, H.W. Duan, Construction of metalorganic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor, ACS Appl. Mater. Interfaces 10 (2018) 18021-18028.[5] J. Pan, Y.Y. Xu, H. Yang, Z.H. Dong, H.F. Liu, B.Y. Xia, Advanced architectures and relatives of air electrodes in Zneair batteries, Adv. Sci. 5 (2018), 1700691.[6] S.S. Fu, H.L. Niu, Z.Y. Tao, J.M. Song, C.J. Mao, S.Y. Zhang, C.L. Chen, D. Wang, Low temperature synthesis and photocatalytic property of perovskite-type LaCoO3 hollow spheres, J. Alloys Compd. 576 (2013) 5-12.[7] Z.C. Pan, Y.C. Jiang, P.Y. Yang, Z.Y. Wu, W.C. Tian, L. Liu, Y. Song, Q.F. Gu, D.L. Sun, L.F. Hu, In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor, ACS Nano 12 (2018) 2968-2979.[8] L. Xu, R. Shi, H. Li, C. Han, M. Wu, C.-P. Wong, F. Kang, B. Li, Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors, Carbon 127 (2018) 459-468.[9] L. Song, X.B. Cao, L. Li, Q.D. Wang, H.T. Ye, L. Gu, C.J. Mao, J.M. Song, S.Y. Zhang, H.L. Niu, General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor, Adv. Funct. Mater. 27 (2017), 1700474.[10] X.Y. Wu, H.L. Niu, S.S. Fu, J.M. Song, C.J. Mao, S.Y. Zhang, D.W. Zhang, C.L. Chen, Coreeshell CeO2@C nanospheres as enhanced anode materials for lithium ion batteries, J. Mater. Chem. A. 2 (2014) 6790-6795.[11] Y.C. Jiang, Z.Y. Wu, L. Jiang, Z.C. Pan, P.Y. Yang, W.C. Tian, L.F. Hu, Freestanding CoSeO3$H2O nanoribbon/carbon nanotube composite paper for 2.4 V highvoltage, flexible, solid-state supercapacitors, Nanoscale 10 (2018) 12003-12010.[12] J. Ji, Y. Li, W. Peng, G. Zhang, F. Zhang, X. Fan, Advanced graphene-based binder-free electrodes for high-performance energy storage, Adv. Mater. 27 (2015) 5264-5279.[13] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbonbased supercapacitors produced by activation of graphene, Science 332 (2011)1537-1541.[14] T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano 7 (2013) 6899-6905.[15] K. Qi, R.Z. Hou, S. Zaman, B.Y. Xia, H.W. Duan, A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors, J. Mater. Chem. A 6 (2018) 3913e3918.[16] Y.C. Jiang, L. Jiang, Z.Y. Wu, P.Y. Yang, H.T. Zhang, Z.C. Pan, L.F. Hu, In situ growth of (NH4)2V10O25$8H2O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors, J. Mater. Chem. A 6 (2018) 16308-16315.[17] Z. Pan, H. Zhi, Y. Qiu, J. Yang, L. Xing, Q. Zhang, X. Ding, X. Wang, G. Xu, H. Yuan, M. Chen, W. Li, Y. Yao, N. Motta, M. Liu, Y. Zhang, Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel for ultrahigh energy density supercapacitors, Nano Energy 46 (2018) 266-276.[18] B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4 (2011) 2826.[19] X. Wang, G. Shi, An introduction to the chemistry of graphene, Phys. Chem. Chem. Phys. 17 (2015) 28484-28504.[20] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版