耦合非线性Schrouml;dinger方程的紧致差分格式任务书

 2021-08-20 12:08

1. 毕业设计(论文)主要目标:

耦合非线性Schrdinger方程在物理学的众多领域都有非常广泛的应用,例如非线性光学、凝聚态物理、等离子体物理等。对于该方程组的求解一直以来都是物理学中国际热点和难点问题。然而该方程在绝大多数定解条件下都很难得到精确解显示表达式,因而数值求解就显得尤为重要。在本文中,我们致力于对耦合非线性Schrdinger方程提出一种新的紧致有限差分格式。引入一个新的能量泛函,证明新格式在离散意义下保持总质量和总能量守恒。运用Taylor展开,给出格式的局部截断误差。通过数值算例验证格式的精度,并对一些物理想象进行模拟。由于本课题解决的问题一直以来都是物理学中当前的国际热点问题,构造对耦合非线性Schrdinger方程的紧致差分格式就显得尤为重要。

2. 毕业设计(论文)主要内容:

1. 对要研究的耦合非线性方程组的物理背景和已有数学、数值研究进行综述;2. 运用紧致有限差分法对耦合非线性Schrdinger方程组提出了一个线性化、解耦的有限差分格式;3. 引入一类新型能量泛函,证明新格式在离散意义上保持总质量和总能量守恒;4.运用Taylor展开,详细推导出格式的局部截断误差5. 通过数值结果来验证格式的精度和并模拟两个孤立波的碰撞现象;6.对我们的主要工作进行简明的总结。

3. 主要参考文献

  1. W.Bao, Q.Tang, and Z.Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrdinger equation, J Comput Phys 235 (2013), 423–445.
  2. S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov Phys JETP 38 (1974), 248–253.
  3. C. R. Menyuk, Pulse propogation in an ellipticaly birefringent Kerr medium, IEEE J Quant Elec 25 (1989), 267482.
  4. W. J. Sonnier and C. I. Christov, Strong coupling of Schrdinger equations: conservative scheme approach, Math Comp Simul 69 (2005), 514–525.
  5. W. J. Sonnier and C. I. Christov, Repelling soliton collisions in coupled Schrdinger equations with negative cross modulation, Discrete Continuous Dyn Syst, Special Issue (2009), 708–718.
  6. W.J.Sonnier, Dynamics of repelling soliton collisions in coupled Schrdinger equations, WaveMotion, 48 (2011), 805–813.
  7. E. P. Gross, Hydrodynamics of a superuid condensate, J Math Phys 4 (1963), 195–207.
  8. E. P. Gross, Structure of a quantized vortex in boson systems, II Nuovo Cimento 20 (1961), 454–477.
  9. L. P. Pitaevskii, Vortex lines in an imperfect bose gas, Soviet Phys JETP 13 (1961), 451–454.
  10. M. Wadati, T. Izuka, and M. Hisakado, A coupled nonlinear Schrdinger equation and optical solitons, J Phys Soc Japan 7 (1992), 2241–2245.
  11. Y. Chen, and J. Atai, Polarization instabilities in birefringent bers: a comparison between continuous waves and solitons, Phys Rev E 52 (1995), 3102–3105.
  12. H.G. Winful, Self-induced polarization changes in birefringent optical bers, Appl Phys Lett 47 (1985), 213–215.
  13. Y. Chen, Stability criterion of coupled soliton states, Phys Rev E 57 (1998), 3542C3550.
  14. T.Wang, B.Guo, and L.Zhang, On the Sonnier-Christov’s difference scheme for the nonlinear coupled Schrdinger system, Aca Math Sci Ser A 30A (2010), 114–125.
  15. T.Wang, L.Zhang, and F.Chen, Numerical analys is of amulti-symplectic scheme for a strongly coupled Schrdinger system, Appl Math Comput 203 (2008), 413–431.
  16. J. Cai, Multisymplectic schemes for strongly coupled Schrdinger system, Appl Math Comput 216 (2010), 2417–2429.
  17. M.S. Ismail and S.Z. Alamri, Highly accurate nite difference method for coupled nonlinear Schrdinger equation, Int J Comp Math 81 (2004), 333–351.
  18. M. S. Ismail and T.R. Taha, Numerical simulation of coupled nonlinear Schrdinger equation, Math Comp Simul 56 (2001), 547–562.
  19. M. S. Ismail and T. R. Taha, A linearly implicit conservative scheme for the coupled nonlinear Schrdinger equation, Math Comp Simul 74 (2007), 302–311.
  20. M. S. Ismail, A fourth-order explicit schemes for the coupled nonlinear Schrdinger equation, Appl Math Comput 196 (2008), 273–284.
  21. J. Cai, Y. Wang, and H. Liang, Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrdinger system, J Comput Phys 239 (2013), 30–50.
  22. W.BaoandY.Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction, East Asian J Appl Math 1 (2011), 49–81.
  23. M.S. Ismail, Numerical solution of coupled nonlinear Schrdinger equation by Galerkin method, Math Comp Simul 78 (2008), 532–547.
  24. H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates, J Comput Appl Math 205 (2007), 88–104.
  25. Y. Zhang, W. Bao, and H. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efcient computation, Phys D 234 (2007), 49–69.
  26. T. Wang, T. Nie, and L. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrdinger system, J Comput Appl Math 231 (2009), 745–759.
  27. Z. Sun and D. Zhao, On the L∞ convergence of a difference scheme for coupled nonlinear Schrdinger equations, Comp Math Appl 59 (2010), 3286–3300.
  28. S. Zhou and X. Cheng, Numerical solution to coupled nonlinear Schrdinger equations on unbounded domains, Math Comp Simul 80 (2010), 2362–2373.
  29. T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross-Pitaevskii equations in one dimension, J Sci Comput 59 (2014), 158–186.
  30. Z. Fei, V. M. Prez-Garca, and L. Vzquez, Numerical simulation of nonlinear Schrdinger systems: a new conservative scheme, Appl Math Comput 71 (1995), 165–177.
  31. S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J Numer Anal 32 (1995), 1839–1875.
  32. Y. Zhou, Application of discrete functional analysis to the nite difference methods, International Academic Publishers, Beijing, 1990.
  33. T. Wang, B. Guo, and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrdinger equation in two dimensions, J Comput Phys 243 (2013), 382–399.
  34. Y. Zhang, Z. Sun, and T. Wang, Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numer Methods Partial Differential Equations 29 (2013), 1487–1503.
  35. F. Zhang, The nite difference method for dissipative Klein-Gordon-Schrdinger equations in three dimensions, J Comput Math 28 (2010), 879–900.
  36. A. A. Samarskii and V. B. Andreev, Difference methods for elliptic equation, Nauka, Moscow, 1976.
  37. J. Yang, Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics, Phys Rev E 59 (1999), 2393–2405.
  38. W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model Simul 2 (2004), 210–236.
  39. W.Bao and Y.Cai, Optimal error estimates of nite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math Comput 82 (2013), 99–128.
  40. W.Bao and Y.Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet Relat Mod 6 (2013), 1–135.
  41. W. Bao and Y. Cai, Uniform error estimates of nite difference methods for the nonlinear Schrdinger equation with wave operator, SIAM J Numer Anal 50 (2012), 492–521.
  42. D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys Rev Lett 81 (1998), 1539–1542.
  43. D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements of relative phase in two-component Bose-Einstein condensates, Phys Rev Lett 81 (1998), 1543–1546.
  44. K. Kasamatsu and M. Tsubota, Nonlinear dynamics for vortex formation in a rotating Bose-Einstein condensate, Phys Rev A 67 (2003), 033610.
  45. K. Kasamatsu, M. Tsubota, and M. Ueda, Vortex phase diagram in rotating two-component BoseEinstein condensates, Phys Rev Lett 91 (2003), 150406.
  46. L. P. Pitaevskii and S. Stringary, Bose-Einstein condensation, Clarendon Press, Oxford, 2003.
  47. J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Holland, Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate, Phys Rev A 59 (1999), R31–R34.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。