立体表面等离激元结构的偏振旋转效应任务书

 2022-01-29 07:01

全文总字数:5694字

1. 毕业设计(论文)的内容和要求

本课题主要利用CST MicroStudio软件理论研究基于基于立体结构超表面的90度偏振旋转效应,主要研究内容如下:1. 研究单层矩形孔阵列的90度偏振旋转现象;2. 研究基于立体结构超表面的90度偏振旋转现象;3. 分析基于立体结构超表面的90度偏振旋转现象的物理机制;4. 绘制基于立体结构超表面的电场、磁场和电流分布;5.研究结构参数对立体结构超表面的90度偏振旋转透射系数的影响

2. 实验内容和要求

本课题是理论研究,主要利用CST MicroStudio软件进行仿真模拟。

3. 参考文献

1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, 揚erfect metamaterial absorber,?Phys.Rev. Lett. 100(20), 207402 (2008).2. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, 揂 thin film broadband absorber based onmulti-sized nanoantennas,?Appl. Phys. Lett. 99(25), 253101 (2011).3. P. Bouchon, C. Koechlin, F. Pardo, R. Ha飀ar, and J. L. Pelouard, 揥ideband omnidirectional infrared absorberwith a patchwork of plasmonic nanoantennas,?Opt. Lett. 37(6), 1038?040 (2012).4. Y. Cheng, Y. Nie, and R. Gong, 揂 polarization-insensitive and omnidirectional broadband terahertzmetamaterial absorber based on coplanar multi-squares films,?Opt. Laser Technol. 48(6), 415?21 (2013).5. A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit,and H. T. Chen, 揗etasurface broadband solar absorber,?Sci. Rep. 6(1), 20347 (2016).6. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, 揢ltra-broadband microwave metamaterial absorber,?Appl. Phys.Lett. 100(10), 103506 (2012).7. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, 揢ltrabroadband light absorption by a sawtoothanisotropic metamaterial slab,?Nano Lett. 12(3), 1443?447 (2012).8. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, 揢ltra-broadband terahertz metamaterial absorber,?Appl. Phys. Lett. 105(2), 021102 (2014).9. S. Liu, H. Chen, and T. J. Cui, 揂 broadband terahertz absorber using multi-layer stacked bars,?Appl. Phys.Lett. 106(15), 151601 (2015).10. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, 揃roadening the absorption bandwidth of metamaterialabsorbers by transverse magnetic harmonics of 210 mode,?Sci. Rep. 6(1), 21431 (2016).11. Y. Liu, W. Guo, and T. Han, 揢ltra-broadband absorption with gradient pyramidal metamaterials,?Prog.Electromagn. Res. C 78, 217?24 (2017).12. F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, 揌igh-resolution grayscale imagehidden in a laser beam,?Light Sci. Appl. 7(1), 17129 (2018).13. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B.Pun, S. Zhang, and X. Chen, 揌elicity multiplexed broadband metasurface holograms,?Nat. Commun. 6(1),8241 (2015).14. B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, 揂 novel ultrathin and broadband microwavemetamaterial absorber,?J. Appl. Phys. 116(9), 094504 (2014).15. D. Sood and C. C. Tripathi, 揃roadband ultrathin low-profile metamaterial microwave absorber,?Appl. Phys. A122(4), 1? (2016).16. W. Guo, Y. Liu, and T. Han, 揢ltra-broadband infrared metasurface absorber,?Opt. Express 24(18), 20586?20592 (2016).17. H. Jaradat and A. Akyurtlu, 揑nfrared (IR) absorber based on multiresonant structure,?IEEE Antennas Wirel.Propag. Lett. 11(4), 1222?225 (2012).18. H. Xiong, J. Hong, C. Luo, and L. Zhong, 揂n ultrathin and broadband metamaterial absorber using multi-layerstructures,?J. Appl. Phys. 114(6), 064109 (2013).19. S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, 揂n optically transparent ultra-broadband microwave absorber,?IEEE Photonics J. 9(6), 1?0 (2017).20. X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, 揇esign and characterization of an ultrabroadbandmetamaterial microwave absorber,?IEEE Photonics J. 9(3), 1?13 (2017).21. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, 揗anipulating electromagnetic wavepolarizations by anisotropic metamaterials,?Phys. Rev. Lett. 99(6), 063908 (2007).22. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit,and H. T. Chen, 揟erahertz metamaterials for linear polarization conversion and anomalous refraction,?Science340(6138), 1304?307 (2013).23. X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, 揂 novel reflective surface with polarizationrotation characteristic,?IEEE Antennas Wirel. Propag. Lett. 12, 968?71 (2013).24. H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, 揃roadband cross polarization converter using plasmonhybridizations in a ring/disk cavity,?Opt. Express 22(17), 20973?0981 (2014).25. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, 揢ltra-wideband polarization conversionmetasurfaces based on multiple plasmon resonances,?J. Appl. Phys. 115(15), 154504 (2014).26. L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, 揢ltra-thin reflective metamaterial polarization rotatorbased on multiple plasmon resonances,?IEEE Antennas Wirel. Propag. Lett. 14, 1157?160 (2015).27. J. Zhao and Y. Cheng, 揂 high-effciency and broadband reflective 90?linear polarization rotator based onanisotropic metamaterial,?Appl. Phys. B 122(10), 1? (2016).28. S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, 揝ymmetry-based coding method andsynthesis topology optimization design of ultrawideband polarization conversion metasurfaces,?Appl. Phys.Lett. 109(1), 014104 (2016).29. Y. Jia, Y. Liu, W. Zhang, and S. Gong, 揢ltra-wideband and high-efficiency polarization rotator based onmetasurface,?Appl. Phys. Lett. 109(5), 051901 (2016).30. Y. Li, Q. Cao, and Y. Wang, 揂 wideband multifunctional multilayer switchable linear polarizationmetasurface,?IEEE Antennas Wirel. Propag. Lett. 17(7), 1314?318 (2018).

4. 毕业设计(论文)计划

(1)2月5日前,完成开题报告;(2)2月20日前,完成外文翻译;(3)3月10前,完成CST软件的操作的学习;(4)4月15日前,完成数值模拟工作;(5)4月30日前,完成实验工作;(6)5月10日前,完成数据的绘图工作;(7)6月1日前,完成毕业论文的写作工作;

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。